Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Publication year range
1.
PeerJ ; 11: e15953, 2023.
Article in English | MEDLINE | ID: mdl-37667748

ABSTRACT

Background: The long-time study of coral reefs with low human impacts can provide information on the effects of regional pressures like climate change, and is an opportunity to document how these pressures are reflected in coral communities. An example of minimal local anthropogenic impacts are the Guanahacabibes coral reefs, located in the westernmost region of Cuba. The objectives of this study were: to evaluate the temporal variability of six benthic biological indicators of coral reefs, and to explore the possible relationship between predictive abiotic variables and biological response variables. Methods: Four coral reef sites were sampled between 2008 and 2017, to analyze biological indicators (living coral cover, fleshy algae index, coral species richness, coral species abundance, coral trait groups species abundance, Functional Reef Index). Seven abiotic variables (wave exposure, sea surface temperature, degree heating week, chlorophyll-a concentration, particulate organic carbon, photosynthetically available radiation, and the diffuse attenuation coefficient) were compiled between 2007 and 2016, from remote sensing datasets, to analyze their relationship with the biological indicators. Permanova statistical analysis was used to evaluate trends in biological variables between sites and years, and Routine Analysis Based on Linear Distances (DISTLM) was used to explore some dependencies between biotic and abiotic variables. Results: We found significant variability in the temporal analysis, with a decrease in living coral cover, a decline in the predominance of the branching and massive framework reef-building species, a decline in Orbicella species abundance, and an increase in the fleshy algae index. Some abiotic variables (average of degree heating weeks, standard deviation of the diffuse attenuation coefficient, average of the sea surface temperature, among others) significantly explained the variability of biological indicators; however, determination coefficients were low. Conclusions: Certain decrease in the functionality of the coral reef was appreciated, taking into account the predominance of secondary and nom-massive framework reef-building species in the last years. A weak association between abiotic and biological variables was found in the temporal analysis. The current scenario of the condition of the coral reefs seems to be regulated by the global effects of climate change, weakly associated effects, and in longer terms.


Subject(s)
Anthozoa , Coral Reefs , Humans , Animals , Anthropogenic Effects , Carbon , Chlorophyll A , Environmental Biomarkers
2.
Rev. biol. trop ; 66(1): 189-203, Jan.-Mar. 2018. tab, graf
Article in Spanish | LILACS | ID: biblio-897664

ABSTRACT

Resumen El pez león (Pterois volitans) invadió la región del Caribe y tiene el potencial de alterar la composición y estructura de las comunidades de peces en los arrecifes coralinos. El objetivo de este estudio fue analizar los índices de diversidad en las comunidades de peces nativos en sitios invadidos por el pez león en dos áreas marinas protegidas (AMP) del Caribe y compararlos con datos previos a la invasión. En ambas AMP, Parque Nacional Guanahacabibes (PNG) en el occidente de Cuba y Parque Nacional Arrecifes de Xcalak (PNAX) en el S de Quintana Roo, se realizaron censos visuales de las especies de peces en hábitats durante las épocas de seca y lluvia del 2013-2015. Se evaluaron nueve sitios, mediante conteos estacionarios. Se registró mayor riqueza de especies en el PNG (43.47±5.14) que en el PNAX (40.22±4.96). No se observaron diferencias entre épocas en ninguna de las AMP. El pez león se ubicó entre las especies más abundantes del PNG. La abundancia media en el PNG (0.76 ± 1.25) fue mayor a la registrada en el PNAX (0.19±0.46). La diversidad disminuyó después de la llegada del pez león en un solo sitio del PNG y en dos sitios del PNAX, pero al parecer estos resultados están más asociados al efecto de la pesca que a la presencia del pez león. A partir de los resultados y asumiendo que los cambios en las comunidades de peces por el pez león podrían no detectarse aún, recomendamos seguir los monitoreos de los descriptores comunitarios para detectar cambios futuros en las comunidades de peces.


Abstract Lionfish (Pterois volitans) invaded the Caribbean region with the potential to alter the composition and structure of native coral reef fish communities. The objective of this study was to analyze the diversity indices of these fish communities potentially affected by lionfish predation and to compare with pre-invasion data. The study was undertaken in two Caribbean marine protected areas (MPAs): Guanahacabibes National Park (PNG) in W Cuba and Xcalak Reefs National Park (PNAX) in S Quintana Roo. We carried out visual censuses of fish species in reef habitats during the dry and rainy seasons of the period 2013-2015. For this, nine sites were defined and evaluated using stationary counts. Our results showed higher species richness (43.47 ± 5.14) and mean abundance (0.76 ± 1.25) in PNG than in PNAX (40.22 ± 4.96, 0.19 ± 0.46, respectively). Diversity decreased after the arrival of lionfish in a single site of PNG and in two sites of the PNAX, but apparently, these results are more related to the fishing activity effect than to the lionfish presence. Based on the results and assuming that changes in the native fish communities by lionfish may not yet be detected, we recommend to continue the monitoring community descriptions in order to detect future changes in native fish communities. Rev. Biol. Trop. 66(1): 189-203. Epub 2018 March 01.

3.
Rev Biol Trop ; 65(1): 117-25, 2017 Mar.
Article in Spanish | MEDLINE | ID: mdl-29466633

ABSTRACT

The first lionfish sighting at the National Park "Cayos de San Felipe" was in 2009 and could be a threat to its marine ecosystem diversity and their capacity to generate services. To analyze the incidence of the lionfish invasion in the area, an annual sampling was conducted between 2013 and 2015. Lionfish abundance and size was investigated on mangroves through visual census on ten transects of 30x2 m/station, and on coral reefs (15 and 25 m deep) with stereo video on six transects of 50x2 m/station. Additionally, incidence of potential native competitors and predators on coral reefs were also estimated. Over the three years, the average density of lionfish varied between 0.0-1.3 indiv./100 m2 per sample stations and it was not significantly different among habitats (mangroves with 0.6 indiv./100 m2, reefs at 15 m - 0.4 indiv./100 m2 and reef at 25 m with 0.3 indiv./100 m2). Lionfish's density was equal to or lower than competitors' density, and was equal to or higher than predator's density in both depths. While lionfish density on mangroves and on reefs at 25 m remained temporally stable, it decreased on reefs at 15 m. Temporary increase in the competitor's density was observed and the predator´s density did not change during the monitored time. Lionfish size varied between 5 and 39 cm; the average fish size from mangroves (12.6 cm) was consistently lower than from reefs (25.2 cm) and showed no variations among years. Lionfish size in reefs was higher than competitor's size and lower than that of predator. Results showed that in the park: 1) mangroves represent lionfish nursery areas; 2) incidence of reef lionfish was not as high as in other areas of Cuba and the Caribbean; and 3) lionfish abundance in reefs tended to decrease over the years, without the intervention of extractive activities or high abundance of large size native groupers. In this sense, recommendations are made to continue monitoring and to investigate lionfish effects and factors that are regulating its incidence in the park.


Subject(s)
Animal Distribution/physiology , Introduced Species , Perciformes/physiology , Analysis of Variance , Animals , Coral Reefs , Cuba , Introduced Species/statistics & numerical data , Population Density , Population Dynamics , Predatory Behavior/physiology , Spatio-Temporal Analysis , Statistics, Nonparametric , Time Factors , Wetlands
4.
PLoS One ; 5(11): e13969, 2010 Nov 15.
Article in English | MEDLINE | ID: mdl-21125021

ABSTRACT

BACKGROUND: The rising temperature of the world's oceans has become a major threat to coral reefs globally as the severity and frequency of mass coral bleaching and mortality events increase. In 2005, high ocean temperatures in the tropical Atlantic and Caribbean resulted in the most severe bleaching event ever recorded in the basin. METHODOLOGY/PRINCIPAL FINDINGS: Satellite-based tools provided warnings for coral reef managers and scientists, guiding both the timing and location of researchers' field observations as anomalously warm conditions developed and spread across the greater Caribbean region from June to October 2005. Field surveys of bleaching and mortality exceeded prior efforts in detail and extent, and provided a new standard for documenting the effects of bleaching and for testing nowcast and forecast products. Collaborators from 22 countries undertook the most comprehensive documentation of basin-scale bleaching to date and found that over 80% of corals bleached and over 40% died at many sites. The most severe bleaching coincided with waters nearest a western Atlantic warm pool that was centered off the northern end of the Lesser Antilles. CONCLUSIONS/SIGNIFICANCE: Thermal stress during the 2005 event exceeded any observed from the Caribbean in the prior 20 years, and regionally-averaged temperatures were the warmest in over 150 years. Comparison of satellite data against field surveys demonstrated a significant predictive relationship between accumulated heat stress (measured using NOAA Coral Reef Watch's Degree Heating Weeks) and bleaching intensity. This severe, widespread bleaching and mortality will undoubtedly have long-term consequences for reef ecosystems and suggests a troubled future for tropical marine ecosystems under a warming climate.


Subject(s)
Anthozoa/growth & development , Coral Reefs , Stress, Physiological/physiology , Temperature , Animals , Caribbean Region , Climate , Ecosystem , Environmental Monitoring , Geography , Oceans and Seas , Survival Analysis , Water Movements
SELECTION OF CITATIONS
SEARCH DETAIL
...